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II Semester M.Sc. Degree  Examination, June/July 2014
(RNS)

(2011-12 & Onwards)
MATHEMATICS

M-202 :  Complex Analysis

Time : 3 Hours Max. Marks : 80

Instructions : i) Answer any five full question choosing atleast two from
each Part.

ii) All questions carry equal marks.

PART – A

1. a) Define Harmonic function and evaluate dz
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 where c : | z | = 2. 3

b) Define conformal mapping and show that let z1, z2, z3, z4 be distinct points in

�. Then (z1, z2, z3, z4) is real if and only if all four points lie on a circle. 7

c) State and prove Cauchy’s integral formula and use it to evaluate
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2. a) State and prove Cauchy’s theorem for a triangle. 6

b) Let f (z) be analytic in a region G with zeros a1, a2, ..., am repeated according

to multiplicity. If r is a simple closed curve in G which does not pass through

any ak, then, prove that )a:r(ndz
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c) Evaluate ∫
r

dz)z(f  if f(z) = Re(z) and r is the polygonal arc connecting 0 to 1

and 1 to 1 + i. 3
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3. a) Find the radius of convergence of
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ii) Prove that 
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convergence. 6

b) Define radius of convergence of power series. Let ∑
∞

=
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n
n )az(a)z(f  in

{ }R|az| <−  where R is radius of convergence of the power series. Then

prove that the Taylor’s expansion of f(z) in the neighbourhood of a point ‘a’ is

exactly the given power series. 6

c) Show that ∑
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4. a) State and prove Laurent’s theorem. 6

b) Let f(z) be analytic function having an isolated singularity at z = a. If | f(z) | is

bounded in a neighbourhood { }raz0 <−<  then prove that f(z) has a

removable singularity at z = a. 6

c) Define the terms :

i) Pole

ii) Removable singularity

iii) Essential singularity

iv) Isolated singularity and give one example each. 4
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PART – B

5. Evaluate the following :

a) ∫
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(4+4+4+4=16)

6. a) State and prove the argument principle theorem. 8

b) Show that p(z) = ez – 4z2 – 1 has exactly two roots in | z | < 1. 8

7. a) State and prove the Schwartz Lemma. 8

b) State and prove the Hadmard’s three circle theorem. 8

8. a) State and prove Riemann mapping theorem. 8

b) State and prove Poisson’s integral theorem. 8
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