R AR PG - 253

Il Semester M.Sc. Degree Examination, June/July 2014
(RNS)
(2011-12 & Onwards)
MATHEMATICS
M-202 : Complex Analysis

Time : 3 Hours Max. Marks : 80

Instructions : i) Answer any five full question choosing atleast two from
each Part.
ii) All questions carry equal marks.

PART -A

eZ

2(z-1)(z-2)

1. a) Define Harmonic function and evaluate _[ dz wherec:|z|=2.

c

b) Define conformal mapping and show-thatlet z,, z,, z5, z, be distinct points in
C. Then (z4, z,, Z, Z,) is real ifiand-only if all four points lie on a circle.

c) State and prove Cauchy’s integral formula and use it to evaluate

J- sinnz? + cos nz>

(z-1%(z-2)

|z|=3
2. a) State and prove Cauchy’s theorem for a triangle.

b) Letf(z) beanalyticin a region G with zeros a4, a,, ..., a,,, repeated according
to multiplicity. If ris a simple closed curve in G which does not pass through

1 f(2) dz = rnn r:
any a,, then,provethat% !f(z) Z—g (r:ay)

c) Evaluate jf(z)dz if f(z) = Re(z) and r is the polygonal arc connecting 0 to 1
r

and1to1+i.
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3. a) Find the radius of convergence of

i) i ) (z-2i)"
n=0 n

a.b a(@+1)bd+1) -

ii 1+ —z+ z i i
ii) Prove that 1 ¢ 12 c(c+1) + ... has unit radius of

convergence. 6

(5]

b) Define radius of convergence of power series. Let f(z)= Y a,(z-a)" in
n=0

{|z-a|<R} where R is radius of convergence of the power series. Then
prove that the Taylor’'s expansion of f(z) in the,neighbourhood of a point ‘a’ is

exactly the given power series. 6
yc(z—y) - n 1 " .
c) Show that e/?2 z = Zanz where anzz—j cos(n6—csinB) d6. 4
N=—co o
4. a) State and prove Laurent’s theorem. 6

b) Let f(z) be analytic function having an isolated singularity at z = a. If |f(z)| is
bounded in a neighbourhood {0 < |z —a| <r} then prove that f(z) has a
removable singularity at z = a. 6

c) Define the terms :

i) Pole
i) Removable singularity
iii) Essential singularity

iv) Isolated singularity and give one example each. 4
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PART-B

5. Evaluate the following:

27 de
a) -([ a+bsind

o 2
XS —X+2
dx
o) '[ox4+10x2+9

J.m _cos(ax) dx,a>0
( ;

x2 +b2)?

2
d) _[ e cos(2mx) dx, m >0

—00

6. a) State and prove the argumentprinciple theorem.

b) Show that p(z) = €% — 4z2 -\ has exactly two roots in |z | < 1.

7. a) State and prove the Schwartz Lemma.
b) State and prove the Hadmard’s three circle theorem.
8. a) State and prove Riemann mapping theorem.

b) State and prove Poisson’s integral theorem.
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(4+4+4+4=16)
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