II Semester M.Sc. Degree Examination, June/July 2014
 (RNS)
 (2011-12 \& Onwards)
 MATHEMATICS
 M-202 : Complex Analysis

Time : 3 Hours
Max. Marks : 80
Instructions : i) Answer any five full question choosing atleast two from each Part.
ii) All questions carry equal marks.
PART - A

1. a) Define Harmonic function and evaluate $\int_{C_{c}} \frac{e^{z}}{z(z-1)(z-2)}$ dz where $\mathrm{c}:|\mathrm{z}|=2$.
b) Define conformal mapping and show that let $z_{1}, z_{2}, z_{3}, z_{4}$ be distinct points in $\overline{\mathbb{C}}$. Then $\left(z_{1}, z_{2}, z_{3}, z_{4}\right)$ is real if and only if all four points lie on a circle.
c) State and prove Cauchy'sintegral formula and use it to evaluate

$$
\begin{equation*}
\int_{|z|=3} \frac{\sin \pi z^{2}+\cos \pi z^{2}}{(z-1)^{2}(z-2)} d z . \tag{6}
\end{equation*}
$$

2. a) State and prove Cauchy's theorem for a triangle.
b) Letf (z) be analytic in a region G with zeros $a_{1}, a_{2}, \ldots, a_{m}$ repeated according to multiplicity. If r is a simple closed curve in G which does not pass through any a_{k}, then, prove that $\frac{1}{2 \pi i} \int_{r} \frac{f^{\prime}(z)}{f(z)} d z=\sum_{k=1}^{m} n\left(r: a_{k}\right)$
c) Evaluate $\int_{r} f(z) d z$ if $f(z)=\operatorname{Re}(z)$ and r is the polygonal arc connecting 0 to 1 and 1 to $1+\mathrm{i}$.
3. a) Find the radius of convergence of
i) $\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n}(z-2 i)^{n}$
ii) Prove that $1+\frac{a \cdot b}{1 \cdot c} z+\frac{a(a+1) b(b+1)}{1 \cdot 2 \cdot c(c+1)} z^{2}+\ldots$ has unit radius of convergence.
b) Define radius of convergence of power series. Let $f(z)=\sum_{n=0}^{\infty} a_{n}(z-a)^{n}$ in $\{|z-a|<R\}$ where R is radius of convergence of the power series. Then prove that the Taylor's expansion of $f(z)$ in the neighbourhood of a point ' a ' is exactly the given power series.
c) Show that $e^{1 / 2^{c(z-1 / z)}}=\sum_{n=-\infty}^{\infty} a_{n} z^{n}$ where $a_{n}=\frac{1}{2 \pi} \int_{0}^{2 \pi} \cos (n \theta-c \sin \theta) d \theta$.
4. a) State and prove Laurent's theorem.
b) Let $f(z)$ be analytic function having an isolated singularity at $z=a$. If $|f(z)|$ is bounded in a neighbourhood $\{0<|z-a|<r\}$ then prove that $f(z)$ has a removable singularity at $z=a$.
c) Define the terms:
i) Pole
ii) Removable singularity
iii) Essential singularity
iv) Isolated singularity and give one example each.

PART - B

5. Evaluate the following:
a) $\int_{0}^{2 \pi} \frac{d \theta}{a+b \sin \theta}$
b) $\int_{-\infty}^{\infty} \frac{x^{2}-x+2}{x^{4}+10 x^{2}+9} d x$
c) $\int_{-\infty}^{\infty} \frac{\cos (a x)}{\left(x^{2}+b^{2}\right)^{2}} d x, a>0$
d) $\int_{-\infty}^{\infty} e^{-x^{2}} \cos (2 m x) d x, m>0$
6. a) State and prove the argument principle theorem.
b) Show that $p(z)=e^{z}-4 z^{2}-1$ has exactly two roots in $|z|<1$.
7. a) State and prove the Schwartz Lemma.
b) State and prove the Hadmard's three circle theorem.
8. a) State and prove Riemann mapping theorem.
b) State and prove Poisson's integral theorem.
